Videosolusi dari Tanya untuk jawab Maths - 8 | GEOMETRI Kubus dalam soal merupakan salah satu soal penerapan teorema menyatakan bahwa “Untuk setiap segitiga siku-siku berlaku kuadrat panjang sisi miring Hipotenusa sama dengan jumlah kuadrat panjang sisi siku-sikunya.”Jika sisi-sisi pada segitiga siku-siku kita beri nama a, b, dan c. Dimana a dan b merupakan sisi sisi yang mengapit sudut siku-siku dan c merupakan sisi miring, atau sisi terpanjang, maka berlaku ↓a² + b² = c²PembahasanDiketahui kubus rusuk KL = LM = MN = NK = 13 menentukan panjang diagonal bidang KM kita menggunakan teorema Pythagoras, sehinggaKM² = KL² + LM²KM² = 13² + 13²KM² = 169 + 169KM² = 338KM = √338KM = √169 x 2KM = √169 x √2KM = 13√2Jadi, panjang diagonal bidang KM adalah 13√2 saya jelaskan untuk mencari panjang PMUntuk menentukan panjang diagonal ruang PM, kita menggunakan teorema Pythagoras, sehinggaPM² = PK² + KM²PM² = 13² + 13√2²PM² = 169 + 169 x 2PM² = 169 + 338PM² = 507PM = √507PM = √169 x 3PM = √169 x √3PM = 13√3Jadi, panjang diagonal ruang PM adalah 13√3 Lebih LanjutSoal lain untuk belajar JawabanKelas 8Mapel MatematikaKategori Teorema PythagorasKode Kunci Teorema Pythagoras. Segitiga siku-siku, sisi terpanjang, sisi miring

KubusKLMN.PQRS di samping memiliki panjang rusuk 13 cm. Panjang KM adalah .

PembahasanDiketahui kubus memliki panjang rusuk . Perhatikan bagian alas kubus, dimana terdapat siku-siku di L seperti gambar berikut. Karena berbentuk segitiga siku-siku maka berlaku Teorema Pythagoras KM 2 KM ​ = = = = = ​ KL 2 + LM 2 1 3 2 + 1 3 2 338 ± 338 ​ ± 13 2 ​ cm ​ Karena rusuk kubus tidak mungkin negatif, dengan demikian panjang . Oleh karena itu, jawaban yang tepat adalah B .Diketahui kubus memliki panjang rusuk . Perhatikan bagian alas kubus, dimana terdapat siku-siku di L seperti gambar berikut. Karena berbentuk segitiga siku-siku maka berlaku Teorema Pythagoras Karena rusuk kubus tidak mungkin negatif, dengan demikian panjang . Oleh karena itu, jawaban yang tepat adalah B. Diketahuikubus KLMN.PQRS. Panjang rusuk KL = LM = MN = NK = 13 cm. Untuk menentukan panjang diagonal bidang KM kita menggunakan teorema Pythagoras, sehingga KM² = KL² + LM² KM² = 13² + 13² KM² = 169 + 169 KM² = 338 KM = √338 KM = √ (169 x 2) KM = √169 x √2 KM = 13√2 Jadi, panjang diagonal bidang KM adalah 13√2 cm. Jawaban yang benar : B.
Kubus di samping memiliki panjang rusuk 13 cm. panjang KM adalah… Jawaban Diketahui kubus Panjang rusuk KL = LM = MN = NK = 13 cm. Untuk menentukan panjang diagonal bidang KM kita menggunakan teorema Pythagoras, sehingga KM² = KL² + LM² KM² = 13² + 13² KM² = 169 + 169 KM² = 338 KM = √338 KM = √169 x 2 KM = √169 x √2 KM = 13√2 Jadi, panjang diagonal bidang KM adalah 13√2 cm. Jawaban yang benar B. Sekalian saya jelaskan untuk mencari panjang PM Untuk menentukan panjang diagonal ruang PM, kita menggunakan teorema Pythagoras, sehingga PM² = PK² + KM² PM² = 13² + 13√2² PM² = 169 + 169 x 2 PM² = 169 + 338 PM² = 507 PM = √507 PM = √169 x 3 PM = √169 x √3 PM = 13√3 Jadi, panjang diagonal ruang PM adalah 13√3 cm. 67 total views, 2 views today
Top1: di samping memiliki panjang rusuk 13 - Brainly. Pengarang: brainly.co.id - Peringkat 105 Ringkasan: . tentukan suku ke 50 dan Suku ke
Mahasiswa/Alumni Universitas Bengkulu08 Februari 2022 1531Hallo Ammellyta, kakak bantu jawab ya. Jawabannya adalah B. Konsep Diagonal bidang pada kubus Untuk menentukan diagonal bidang pada kubus dapat ditentukan dengan rumus berikut. d² = s² +s² dengan d = diagonal bidang kubus s = panjang sisi kubus Ingat. √ = √a . √b Perhatikan pembahasan berikut. KM adalah digonal bidang pada kubus Panjang KM dapat ditentukan sebagai berikut. KM² = s² + s² KM² = 13² + 13² KM² = 169 + 169 KM² = KM = ±√ KM = ± KM = ±13√2 KM = 13√2 Ambil nilai KM yang positif, karena tidak ada panjang yang nilainya negatif. Jadi, panjang KM adalah 13√2 cm. Dengan demikian, jawaban yang tepat adalah B. Semoga membantu kXmJrM.
  • 2p048xh19d.pages.dev/201
  • 2p048xh19d.pages.dev/207
  • 2p048xh19d.pages.dev/64
  • 2p048xh19d.pages.dev/371
  • 2p048xh19d.pages.dev/28
  • 2p048xh19d.pages.dev/74
  • 2p048xh19d.pages.dev/289
  • 2p048xh19d.pages.dev/200
  • 2p048xh19d.pages.dev/15
  • kubus klmn pqrs di samping memiliki panjang rusuk 13 cm